Sonntag, 10. März 2013

QM 006: INDO One-electron Integrals

In Frank, Computational Chemistry, Eq. 3.86 is
$$ \langle \mu_A \left| \bf{h} \right| \mu_A \rangle = \left< \mu_A \left| -\frac{1}{2}\nabla^2 - \bf{V}_a \right| \mu_A \right> - \sum_{a \neq A}^{Nuclei} \langle \mu_A \left| \bf{V}_a \right| \mu_A \rangle $$.

Is there a reason for not writing it as
$$ \langle \mu_A \left| \bf{h} \right| \mu_A \rangle = \left< \mu_A \left| -\frac{1}{2}\nabla^2 \right| \mu_A \right> - \sum_{a = A}^{Nuclei} \langle \mu_A \left| \bf{V}_a \right| \mu_A \rangle $$?

1 Kommentar:

  1. $\left< \mu_A \left| -\frac{1}{2}\nabla^2 - \bf{V}_a \right| \mu_A \right>$ is treated as a parameter in semiempirical methods

    AntwortenLöschen